Implantation cochléaire robotisée et naviguée
STERKERS O
|
BOZORG GRAYELI A
|
NGUYEN Y
|
MIROIR M
|
MAZALAIGUE S
|
BENSIMON JL
|
BERNARDESCHI D
|
FERRARY E
Séance du mercredi 17 mars 2010 (CHIRURGIE ORL)
Résumé
Introduction : La précision des systèmes de navigation chirurgicale assistée par ordinateur est aujourd’hui suffisante pour permettre l’abord de la cochlée à travers la mastoïde en évitant le nerf facial. Compte tenu du développement des implants électro-acoustiques, une procédure mini-invasive et robotisée pourrait donner une meilleur reproductibilité de la préservation de l’audition résiduelle.Notre projet d’implantation cochléaire mini-invasive et robotisée se développe dans 3 axes : l’abord mini-invasive de la cochlée assisté par ordinateur, l’insertion mininvasive et robotisée du porte-électrode dans la cochlée et enfin le couplage entre le système de navigation et le robot pour une procédure entièrement robotisée.Matériels et méthodes : Dans un premier travail, 5 os temporaux humains ont été inclus dans cette étude. Pour chaque pièce anatomique, 4 vis en titane ont été placées sur le cortex mastoïdien et un scanner a été réalisé (aquisition hélicoïdale, coupes de 0,6 mm d’épaisseur tous les 0,3 mm). Les images ont été transférées dans le système de navigation électromagnétique Digipointeur (Collin SA, Bagneux, France). Le recalage a été réalisé uniquement à l’aide des 4 vis de titane servant de marqueurs fiduciaux. Un moteur électrique pour le fraisage de la mastoïde a été connecté à l’émetteur du système de navigation pour une surveillance continue de la progression de la fraise dans la mastoïde. Une approche conique a été réalisée, partant de la zone criblée en haut et en arrière du conduit auditif externe et se terminant au niveau de la berge antéro-inférieure de la fenêtre ovale en réalisant une tympanotomie postérieure. Des tailles décroissantes de fraises diamentées (5, 3 et 2 mm de diameter) ont été employées pour effectuer cette approche conique. La trajectoire a été ensuite vérifiée par un endoscope rigide. La cochléostomie a été réalisée par un micromoteur muni d’une fraise de 1 mm de diamètre. Un fil d’acier de 0,5 mm de diamètre a été inséré dans la cochlée. Un scanner de contrôle a été réalisé. Les os temporaux ont été ensuite disséqués pour examiner le canal du facial à la recherche d’une blessure nerveuse.Dans une deuxième étude, nous avons mis au point un système robotisé d’insertion d’électrode permettant de surveiller les forces d’insertion du porte électrode.Résultats : Au cours du premier travail, l’approche conique a techniquement réalisable dans tous les cas et a permis une rectification de la trajectoire en cours de progression. Aucune blessure du canal du facial n’a été observée. Le fil d’acier a pu être placé dans le scala vestibuli et la précision du système de navigation au niveau de la cible (berge antéro-inférieure de la fenêtre ronde) était < 1 mm dans tous les cas.Dans le deuxième travail, nous avons constaté que les efforts de frottement lors de l’insertion des premiers mm du porte électrode sont très faible (0,3 N) et les changements subtils de force lors de la collision du porte électrode avec le mur latéral de la cochlée ou le ligament spiral peuvent totalement passer inaperçus par le chirurgien. Les travaux en cours permettent de définir les seuils de force à ne pas dépasser pour un traumatisme cochléaire minimal.Conclusion : Le système de navigation Digipointeur avec un recalage par des marqueurs invasifs permet un abord mini-invasif et précis de la cochlée. Un système robotisé ave surveillance continue des forces d’insertion de porte électrode augmentera très probablement la sécurité et la reproductibilité du geste chirurgical.